New search direction of steepest descent method for solving large linear systems

نویسندگان

چکیده

The steepest descent (SD) method is well-known as the simplest in optimization. In this paper, we propose a new SD search direction for solving system of linear equations Ax = b. We also prove that proposed with exact line satisfies condition and possesses global convergence properties. This motivated by previous work on Zubai’ah-Mustafa-Rivaie-Ismail (ZMRI)[2]. Numerical comparisons classical algorithm ZMRI show very effective depending number iterations (NOI) CPU time.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

In this paper we present a method for solving fuzzy linear systemsby two crisp linear systems. Also necessary and sufficient conditions for existenceof solution are given. Some numerical examples illustrate the efficiencyof the method.

متن کامل

Steepest descent method for solving zero-one nonlinear programming problems

In this paper we use steepest descent method for solving zero-one nonlinear programming problem. Using penalty function we transform this problem to an unconstrained optimization problem and then by steepest descent method we obtain the original problem optimal solution. 2007 Elsevier Inc. All rights reserved.

متن کامل

The steepest descent gravitational method for linear programming

We present a version of the gravitational method for linear programming, based on steepest descent gravitational directions. Finding the direction involves a special small “nearest point problem” that we solve using an efficient geometric approach. The method requires no expensive initialization, and operates only with a small subset of locally active constraints at each step. Redundant constra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: General letters in mathematics

سال: 2022

ISSN: ['2519-9269', '2519-9277']

DOI: https://doi.org/10.31559/glm2022.12.2.2